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S u m m a w  

This paper examines the small-amplitude free-surface motions on a homogeneously fluidized bed for which the 
density ratio p//p, << 1, where p! is the fluid density and Ps is the solid density. It is shown that to leading order 
in p / /p , ,  the surface motions are independent of the dynamics of the bed varying only with the dimensions of the 
bed and the conditions at uniform fluidization. Also, at leading order, it is found that provided the fluidization 
remains homogeneous there is a direct analogy between waves on the free surface of a fluidized bed and waves 
on the free surface of an inviscid liquid (when surface tension is neglected). 

1. Introduction 

Fluidization is a process in which a bed of solid particles, whose diameters range typically 
from 1 mm down to 10 -2 mm, is subject to a vertical, upward flow of fluid. On increasing 
the fluid flow speed, a point is reached where the upward drag exerted by the fluid on the 
particles balances the downward gravitational force acting on the particles, which then 
become buoyant. At this point the bed is said to be fluidized. Upon fluidization, a clearly 
defined free surface separates the fluidized region from the pure fluid region above. This 
free surface is defined by the uppermost  layer of particles. The fluidized region exhibits 
many  large-scale phenomena,  such as buoyancy, which are similar to those of a liquid. In 
particular when the fluidized bed is disturbed, waves appear  on the free surface showing 
many similarities to the waves on the free surface of a liquid in a bounded tank. A brief 
description of the surface waves on a fluidized bed is given by Gelperin and Einstein [2]. 
Rice and Wilhelm [7] used two models to describe the motion of the free surface of a 
fluidized bed, although it is not clear how their results relate to a fluidized bed since 
neither of the models uses equations of motion derived from the elementary balances in 
both the fluid and particle phases in the fluidized region. In fact, in both models the 
interface is treated as that which separates two immiscible liquids, whereas the interface 
separating a fluidized region from the pure fluid region is in fact permeable to the fluid 
phase, and defined by the uppermost  layer of particles. 

In this paper  we consider the possible small-amplitude surface motions on a bounded 
fluidized bed in which compressibility effects in the fluid phase are negligible, and 
pf/p~, << 1 where p/is the fluid density and Ps is the particle density. In the fluidized region, 
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the fundamental continuum equations of motion for two-phase flows are used while in the 
pure fluid region the usual continuity and Euler equations are used. Since we are 
considering essentially gas-fluidized beds, the effect of viscosity in the fluid phase can be 
neglected. Also, the effect of particle phase viscosity is neglected, although we are able to 
assess the small contribution of this term once the solution to the inviscid problem has 
been determined. 

2. Equations of motion 

The equations of motion in the fluidized region for fluidized beds in which pf/p, << 1 and 
fluid and particle phase viscosities have been neglected are, after neglecting terms of 
O(pz/ps ) following Murray [4,5], 

~)E 
O---t- + div(Eu) = 0, (2.1) 

0E 
- 0-7+div([1 - E ] v ) = O ,  (2.2) 

p,(1 - E ) ( - ~ + [ v "  V]v} = f l ( u - v ) - ( 1  - E)p,  g k -  VPs, (2.3) 

VP = - fl(u - v), (2.4) 

where u is the fluid velocity, v is the particle velocity, E is the voidage, P is the fluid phase 
pressure, 0~ is the particle density and k is a unit vector directed vertically upwards; fl is 
the drag coefficient per unit bed volume and P, is the particle phase pressure, both of 
which depend on E, and the equations are closed once this functional dependence is 
proposed. Equations (2.1) and (2.2) express conservation of mass in the fluid and particle 
phases respectively, while equations (2.3) and (2.4) are momentum balances in the particle 
and fluid phases respectively. Detailed derivations of the equations of motion governing a 
fluidized bed are given by Murray [4,5] and Anderson and Jackson [1], in which the 
physical significance of each term is discussed at some length. 

In the pure fluid region, the equations of motion, after neglecting the effects of 
viscosity, are the usual continuity and Euler equations; namely, 

div(q) = O, 

p/( ~qt + [q • V]q) = -vet-pfgk, 

(2.5) 

(2.6) 

where q is the fluid velocity and Pi is the fluid pressure in the pure fluid region, and pf is 
the fluid density. 

3. Boundary conditions 

In a fluidized bed there are three different types of boundary; the side walls which are 
impermeable to both fluid and particle phases, the bottom grid which allows fluid to pass 
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but is impermeable to the particle phase, and the free surface being the interface between 
the fluidized and pure fluid regions (as defined by the uppermost layer of particles) allows 
fluid to pass. 

Since we are considering an inviscid model, we must apply the condition of zero normal 
fluid and particle velocities at the side walls. At the bottom of the bed the normal particle 
velocity must be zero, while the mass flux of fluid across the bottom must be continuous. 
Finally, at the free surface the normal particle velocity must equal the normal rate of 
change of the interface, the mass flux of fluid across the interface must be continuous; and 
the normal stress across the interface must be continuous. 

The equations of motion (2.1)-(2.6) and the above boundary conditions together with 
suitable initial conditions determine completely the flow in the fluidized region, the free 
surface and the flow in the pure fluid region above. To proceed further the geometry of 
the fluidized bed must be considered. In this paper we examine the two-dimensional 
surface waves on a fluidized bed of rectangular cross-section and axisymmetric surface 
waves on a fluidized bed of cylindrical cross section, although it should be noted that 
three-dimensional surface waves on a rectangular fluidized bed may be treated in a similar 
manner. We consider first the case of two-dimensional surface waves on a fluidized bed of 
rectangular cross-section. 

4. Fluidized bed of rectangular cross-section 

We introduce Cartesian coordinates (x ,y ,  z), where z measures distance vertically up- 
wards and x and y are perpendicular axes measuring distance in the horizontal plane. The 
velocity vectors may now be written as u = (Ux, Uy, uz), v = (vx, Vy, vz) and q = (qx, qy, q~). 

As we are considering only two-dimensional flow, we take O/Oy  - 0 and Vy = Uy = qy =- O. 

z l 

x = O  

Pure fluid region 

• Fluidized region'- 

• • . o • ° • 

• Q 
• • 

" 

z =~l(x,t) 

X = Q  

Z-- - h  

Figure 1. The coordinate system for the fluidized bed of rectangular cross-section. 
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The  b o t t o m  of  the bed  is f ixed at  z = - h  and the free surface at z = */(x, t),  while the side 
walls  are given by  x = 0 and  x = a. The coord ina te  sys tem is shown in Fig. 1. 

The  b o u n d a r y  condi t ions  may  now be fo rmula ted  in terms of the dependen t  variables.  
In  the f luidized region, - h  ~< z -%< ~(x ,  t),  we have 

v x = u  x = O  on x = O  and x = a ,  

Eu z - U T = O on z = - h ,  

v z = 0 on z = - h .  

In  the pure  fluid region, T/(x, t ) <  z < o¢, we have 

q x = O  on x = O  and x = a ,  

q remains  b o u n d e d  as z --, ~ .  

F ina l ly ,  at the free surface z = ~ (x ,  t)  we have, 

P + P s - P , = O ,  

~rt a'O 

071 
( E u ~ - -  q~ + (1 -- E ) v x ) ~ x  - ( E u ~ -  q~ + (1 - E ) o ~ )  = O. 

(4.1) 
(4.2) 
(4.3) 

(4.4) 
(4.5) 

(4.6) 

(4.7) 

(4.8) 

The  s implest  solut ion of  equat ions  (2.1)-(2.6)  which satisfies the b o u n d a r y  condi t ions  
(4.1)-(4.8)  is that  in which the bed  is un i fo rmly  f luidized of dep th  h. The free surface is 
hor izonta l  and  is f ixed at  z = 0, that  is 

z = ~/(x, t ) = 0 .  (4.9) 

In the f luidized region,  - h  < z < 0, 

u = uok,  v = 0, E = ¢0, P = P o ( z )  = P o t -  g(1 - % ) p s z -  P s ( % )  (4.10) 

where  u 0 = (1 - % ) p s g / B o , / 3 0  = / 3 ( % )  and Pol is the pressure  at the interface.  Also,  if M 
is the total  mass  of  par t ic les  per  unit  cross-sect ion,  then h = M / ( 1  - %)p~a.  In the pure  
fluid region, 0 < z < ~ ,  we have 

q = ¢ o U o  k ,  

e , =  P , o ( z ) =  e o , -  pfgz.  (4.11) 

The  un i fo rm solut ion (4.9)-(4.11)  is i l lus t ra ted in Fig. 2. This un i fo rm state is now used 
to in t roduce  the fol lowing d imensionless  quant i t ies  

u = U o U ' ,  v = UoV',  q = u 0 q ' ,  x = h x ' ,  z = h z ' ,  

2 t 2 r 2 t 
t = ( h / u o ) t ' ,  P = P~uoP , P, = p~uoP ~ , PI = P[UoPI, 

/3 = (OsUo /h  ) /3 ' ,  n = h , ( .  

Subs t i tu t ing  into the equat ions  (2.1)-(2.6)  and  on d r o p p i n g  pr imes  for convenience  we 
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obta in  the following set of  dimensionless  equations:  

OE 
8-7+ V . E u = O ,  

OE 
- o-7+ V ' ( 1 - E ) v = O ,  

8 V + [ v ' v ] v ) = f l ( u - v ) - ~ - - E - k  - VPs, (1 - E ) { - ~ -  

V P - - - f l ( u - v )  

in the region - 1 < z < ~/(x, t), and 

V "q=O, 
8q g 
~t ~ - [ q ' v ] q = - v P ' - ~ k  

(4.12) 

(4.13) 

in the region ~(x ,  t)  < z < oo, where F =  uZ/gh is the F roude  number .  In terms of the 
dimensionless  quanti t ies  the bounda ry  condi t ions (4.1)-(4.8) become  

X = O ' ~  

x = o, (4.14) 

v ~ = u ~ = O  on x = O  and 

Eu z - u  T = O  on z = - l ,  

~ =  0 on z = - 1 ,  

q ~ = O  on x = O  and 

P + ~ = 0  on z=~l(x,t), 
an an 
at+VxTx-Vz=0 on z=n(x,t), 

t t t  
q= ~oUok 

x 
0 .'-- 

° ° • ~ , . .  ° ° °  

• • • ~ . . • ° 

• . • . °  • ° ° ° ; ° 

• ° •  • 

• . "  LI = u o k  

" v = O -  

° " F=  E:•  

• • i • . =  , • • • ° ° • ° ° ° 

° • " , °  " ° .  ° s 

--7 t t t ' -  
a T 

Figure  2. The  un i fo rm state.  

z = O  

x = o  

z = - h  
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( E u x - q ~ 4 ( 1 - E ) v ~ ) ~ x - ( E u ~ - q ~ + ( 1 - E ) v ~ ) = O  on z = ~ ( x , t )  

where o = a/h and terms of O(&/&) arising in the dimensionless boundary conditions 
have been neglected, to be consistent with neglecting such terms in the equations of 
motion in the fluidized region. 

In terms of the dimensionless quantities, the uniform state may now be written 

u = k , v = O , E = % ,  

P=P°(z)=P~)l F - - Z - e s ( , o )  
(4.15) 

for - l < z < 0 a n d  

q = %k, (4.16) 
Pt = P~o (z) = P~I - z /F  

where again terms of O(of/&) have been neglected. Here fl0 = ( 1 -  Co)/F and P~/= 
Po,/piU~o. 

We now examine the possible surface motions due to small perturbations about the 
uniform state (4.15) and (4.16) when the bed is homogeneously fluidized. Perturbation 
quantities ~, E, ~, P, ~l, Pt are introduced, and we write 

u = k + a~, v = a ~ ,  E = Co + af t ,  P=Po(z )+aP,  q = %k + aCl, 

et=Pio(Z)+aPi, n=ot~t where la[<<l .  
(4.17) 

Substitution of (4.17) into the equations of motion (4.12) and (4.13), and boundary 
conditions (4.14) and retaining terms of O(ct) only, results in a set of linear partial 
differential equations for the perturbed quantities subject to the linearized boundary 
conditions; namely, 

oft oft: 
a~- + ~-z + %V" u = 0, (4.18) 

aE 
at I-(1 - c o ) v . {  = 0 ,  (4.19) 

1 _ . _  
at ~ ( u -  ~) + - ~ ,oVff?' (4.20) 

v P  = 1 - % (R _ ~ )  _ f l ~ E k  ( 4 . 2 1 )  
F 

in the fluidized region, where fl'o = d f l / d E I , o ,  and 

xT. Ft = 0, (4.22) 

a~i aq - xTP/ (4.23) 
a t  + %-a-7 = 



in the pure fluid region, subject to the bounda ry  condi t ions 
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f i ~ = i ~ = 0  on x = 0  and x = o ,  (4.24) 

c0il - . + f f S = 0  on z = - l ,  (4.25) 

~ . = 0  on z = - l ,  (4.26) 

F /x=0 on x = 0  and x = o ,  (4.27) 

FI remains  bounded  as z ~ ~ ,  (4.28) 

~ + dP s ,off 1 - % _  = F ~ on z = 0 ,  (4.29) 

~---~- = ~: on z = 0, (4.30) 

c 0 f i . . + E - ~ : + ( 1 - % ) ~ = 0  on z = 0 .  (4.31) 

El iminat ing between equat ions  (4.18)-(4.21), a single equat ion for E may  be obtained,  
namely,  

3 z f f +  1 Off? ( 1 - % ) - % ( F f l ~ + l )  Off dPs 
Ot 2 % F  Ot + % F  Oz + dE ,0 V 2 E = 0 "  (4.32) 

Examining  equat ion (4.32) we find, following N e e d h a m  and Merkin  [6], that  provided 

_(( 2,01)  2 
des Co F/3~+ - -  > 1  
dE "o Co 

then for any  initial dis turbance,  f i t s 0  as t ~ ~ .  When  this is so we expect the 
fluidization to be homogeneous  and the solution ff = 0 to give a reasonable  first ap-  
proximat ion .  This is further  conf i rmed by  Mur ray  [5], who used the solution ff = 0 in the 
" o u t e r "  flow field when considering the passage of a single " b u b b l e "  through an 
otherwise homogeneous ly  fluidized bed, his r e su l t s showing  encouraging agreement  with 
exper imenta l  evidence. With this in mind, we take E = 0 in the fluidized region f rom now 
on throughout  the paper .  The equat ions of mot ion  in the fluidized region then become,  

xT. fi = 0, (4.33) 

V ' ~  = 0, (4.34) 

3~ 1 - c o _ 
( 1 - c 0 ) -  ~ - =  F ( u - ~ ) ,  (4.35) 

V P  1 - c o 
(fi - ~) (4.36) 
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while boundary conditions (4.25), (4.29) and (4.31) become 

f i t = 0  on z = - l ,  (4.37) 

_ (1 - ~o)~ 
F on z = 0, (4.38) 

% f i z - Y L + ( 1 - % ) ~ z = 0  on z = 0 .  (4.39) 

Equations (4.33) to (4.36) are six equations in five unknowns, but they are not all 
independent, since taking the divergence of equation (4.35) and using equation (4.34) gives 
x7 - fi = 0, equation (4.33). Thus equation (4.33) can be removed, leaving the five indepen- 
dent equations. (4.34)-(4.36) in the five unknowns u, v and P. After some re-arrangement 
the equations to be solved in the fluidized region are 

V"  ~ = O, (4.40) 

3~ 1 
3t  1 - % 

- -  x T P ,  ( 4 . 4 1 )  

~,~ _ 1 - % 
~7- (fi - v)" (4.42) 

Defining to/= curl fi and top = curl ~ as the vorticity fields in the fluid and particle phases 
respectively, we find that by taking the curl of equations (4.41) and (4.42), Otop /Ot  - 0 and 
to/= top, i.e. the vorticity fields are independent of time, thus the rotational part of the 
velocity fields induced by the vorticity fields are also independent of time and by equation 
(4.41) have P = 0. Therefore, using boundary condition (4.38), the rotational part of the 
velocity fields induce no fluctuation to the flatness of the free surface. The remaining part 
of the velocity field is irrotational, and it is only this part which disturbs the free surface. 
Thus since we wish to determine the possible motions of the free surface due to small 
perturbations about the uniform state, it is necessary only to consider the irrotational 
parts of the velocity fields. Therefore we may now introduce the potential fields q~, ~p and 
~b~, where ~ = Vq,, ~ = XT~p and ti = wPt- In terms of these potentials the equations in the 
fluidized region become, 

V 2¢ = 0, (4.43) 

+ (1 - Co) ~ = 0, (4.44) 

F fi, (4.45) 
~ k = ~ -  1 - c  o 

while in the pure fluid region, equations (4.22) and (4.23) become 

V2q~/= 0, 

~ +  0 ~  
- ~ -  + %~z~ = 0. 

( 4 . 4 6 )  

(4.47) 
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The boundary conditions may now be written in terms of 4,, q~ and q~/as 

34, 3+ (4.48) 3x 3x 0 on x = 0  and x = o ,  

~4, a¢ 
~z ~z 0 on z = - l ,  (4.49) 

- 0  on x = 0  and x = o ,  (4.50) 
ax 

q# remains bounded as z ~ o~, (4.51) 

__024,+ 1 04, = 
at  2 F Oz 0 on z 0, (4.52) 

04, 
on z = 0 ,  (4.53) 

Ot F 

,0~  z ~ + ( 1 - , 0 ) - - ~ z = 0  on z = 0 .  (4.54) 

We now solve in the fluidized region for 4,, P and ~k. A separable solution for 4, is 
sought in the form 4, = X,~(x)Z~,(z)T,(t), and the appropriate solution of equation (4.43) 
subject to boundary conditions (4.48), (4.49) and (4.52) is given by 

Ok(X, Z, t)  = cosh k ( z  + 1) cos kx ( At, sin o:kt + B k cos ~k t } (4.55) 

where 

k ~z k - f f tanhk and k nor = = - - , n = 0 , 1 , 2  . . . .  
O 

is now determined from equation (4.44) as 

i l k ( x , z , t ) = - ( 1 - , O ) W k C O S h k ( z + l ) c o s k x ( A  k c o s ~ k  t - B  ks inwkt} ,  (4.56) 

while 4, follows from equation (4.45) and is given by 

~kk(X, z, t)  = cosh k ( z  + 1) cos k x { ( A  k - Fw~,Bk) sin o:kt 

+( B k + FWkAk) COS ¢%t}. (4.57) 

It should be noted here that although no direct application of the boundary conditions 
(4.48) and (4.49) was necessary to determine q, from equation (4.45), + does in fact satisfy 
these conditions, which may be shown directly from equations (4.44) and (4.45). 

In the pure fluid region equations (4.46) and (4.47) must be solved for q~t and fit- Again 
a separable solution of equation (4.46) is sought in the form ~1 = Xt(x)Zl(z)Tt( t ) .  After 
application of the boundary conditions (4.50) and (4.51), the appropriate solution is given 
by 

~ptk(X, Z, t)  = e -kz cos kx Ttk(t ). (4.58) 
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Subst i tut ion of (4.55), (4.57) and (4.58) into the bounda ry  condi t ion (4.54) then 
determines  Tk( t ) as 

Ttk(t)  = ( ( , o F o ~ k B k - A , )  s i n w k t - (%F o~k A k +B ~ .  ) cos wkt } sinh k. (4.59) 

It  is now s t ra ightforward to calculate Pt f rom equat ion (4.47). 
Finally, the surface elevation ~ m a y  be de termined f rom the remaining boundary  

condi t ion (4.53) and,  after  use of  (4.55), takes the form 

~l,(x, t)  = F~o k cosh k cos k x (  B k sin o~,t - A k cos o~,t }. (4.60) 

Thus  the free-surface mot ions  are ha rmonic  s tanding waves of  wave number  k, where 

k n ~  = - - ,  n = 0, 1, 2 . . . .  (4.61) 
O 

and 

o~( k ) = { k F - '  tanh k}  a/2 (4.62) 

For  m a n y  fluidized beds the F roude  n umber  F << 1. Hence  the period of the s tanding 
waves T ( k )  = 2~ r /w(k )  - O ( F / k )  1/2 << 1 for all k = nTr/o, n = 1, 2 . . . .  

For  arbi t rary  initial surface elevations, the general solutions may  be writ ten as Fourier  
series, 

~(x ,  t)  = ~ Fo~ n cosh nCrcosn~rx ( B~ sin w , t -  A ,  cos w , t } ,  
O O 

n = 0  

q~(x, z, t )  = ~ coshn~r (z  + 1) cos n~rx 
O O 

n = 0  

( A n sin wnt + B. cos ~o.t ) ,  

~k(x, z, t) = ~ coshn~r (z + 1) cos n~rx { ( A .  - Fc%Bn) sin o~nt 
0 0 

n = O  

+ (B  n + F6o.A.) cos o~.t}, 

~l(X, z, t )= 
n = 0  

e _ n ~r z / o r t  " tr  c o s - - x  { ( %Fo~.B n - A . )  sin ~nt 
O 

-(%F~.A. + B.) cos o~.t} sinh n~r 
O 

Two initial condit ions are then required to de termine  the constants  A n and B~. 

5. Fluidized bed of cylindrical cross-section 

Having  considered the possible two-dimensional  smal l -ampl i tude  surface mot ions  in a 
fluidized bed  of rectangular  cross-section, we now examine  the axisymmetr ic  surface 
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elevations in a cylindrical fluidized bed. Coordinates (R, O, z) are introduced where again 
z measures distance vertically upwards, R measures distance radially outwards from the 
vertical axis of the cylinder and 0 measures the angle in the horizontal plane. For 
axisymmetric flow, 0 /00  = 0 and a is now the radius of the cylinder. Also, boundary 
conditions (4.48) and (4.50) become 

0@ 0~k 0 on R = a ,  - l < z < 0 ,  (5.1) 
OR OR 

0 ~ / = 0  on R = a , O < z < o o .  (5.2) 
OR 

The appropriate solution of equation (4.43) subject to boundary conditions (5.1), (4.52) 
and (4.49) is 

qSk(R, z, t)  = cosh k ( z  + 1 ) J o ( k R ) { A  k cos c%t+ B k sin ~Okt } (5.3) 

where J0 is the Bessel function of the first kind of order zero, and 

~0 k = ( 
k ,~1/2 

t a n h k )  , (5.4) 

k =/~.__z-, n = 0, 1, 2 . . . . .  (5.5) 
a 

where ~,  are solutions of the equation J l ( k o )  = 0. ~k is determined by (4.45) as 

~kk(R, z, t) = cosh k (  z + 1)Jo( k R  ) ( ( Ak + FookBk ) cos o~kt + ( B k - FtOkAk ) sin ~%t}, 

(5.6) 

while in the pure fluid region the appropriate solution of equation (4.46) subject to (5.2), 
(4.51) and (4.54) is given by 

~lk ( R ,  Z, t )  = e-k~Jo( k R  ) ( ( %F(okBk -- Ak ) sin (okt -- ( (oF(okAk + Bk ) COS (okt } sinh k. 

(5.7) 

Finally, the surface elevation is determined from (4.53) as 

Tlk ( R ,  t )  = Fro k cosh kJo( k R  ) (  B k sin tokt - A k cos (okt ) . (5.8) 

The general solution may now be written as a Fourier-Bessel series, Watson [8], and 
again two initial conditions are required to determine the constants A k, B k. 

6. Conclusions 

The possible small-amplitude (small compared with depth) motions of the free surface of a 
homogeneously fluidized bed in which Pf/Ps << 1 have been examined. For two-dimen- 
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sional flow in a fluidized bed of rectangular cross-section and axisymmetric flow in a 
fluidized bed of cylindrical cross-section, it has been shown that these possible surface 
motions are standing waves. 

The surface of the rectangular bed is determined by the superposition of sinusoidal 
wave components with possible wave numbers n~' /o,  n = 0, 1, 2 . . . . .  which have corre- 
sponding period 

[ nTg n ~  ~1/2 
T, = 2 ~ / t - 0 - ~ t a n h ~ -  / , 

while the surface of the cylindrical bed is composed of components with radial depen- 
dence Jo(~ , ,R /o ) ,  n = 0, 1, 2 . . . . .  and corresponding period 

In terms of dimensional quantities, we find that the period is dependent only upon the 
depth of the undisturbed bed, h, the width (or radius) of the bed, a and g. 

Furthermore, the possible motions of the free surface are exactly the same as those of 
the free surface of a liquid with undisturbed height h when contained in a similar tank. 
This correspondence becomes more clear on noticing that the equations and boundary 
conditions (4.43), (4.48), (4.49) and (4.52) governing the potential, 0, for the particle phase 
velocity in the fluidized region, together with condition (4.53) which determines the free 
surface, are identical with the linearized equations and boundary conditions determining 
the velocity potential and the free-surface elevation of a pure inviscid liquid of undis- 
turbed depth h bounded by a similar vessel. Therefore a direct analogy can be made 
between small-amplitude surface waves on a homogeneously fluidized bed for which 
P/lOs << 1, and those on the surface of a liquid contained in a similar vessel (when surface 
tension is neglected). To determine the surface elevation an "inviscid" theory was used 
when particle and fluid phase viscosity were neglected. For gas-fluidized beds the effect of 
the fluid phase velocity is expected to be very small, but it is not immediately clear how 
the motion is affected by the neglect of the particle phase viscosity. Since this enters the 
linearised equations of motion as a term of the form UsV 2 v, where u s = ~s/(1 - c o)0~, as in 
the equations of motion for a pure liquid, use of the above analogy can be made in 
determining its effect. Following Lighthill [3], we find the effect of particle phase viscosity 
is to cause attenuation of the surface waves through energy dissipation due to bot tom 
friction which takes place in a boundary layer attached to the solid bot tom and internal 
dissipation by viscous stresses acting throughout the wave, although for deep beds in 
which the depth is much longer than the wavelength, the attenuation is significant only 
over many periods, and the inviscid theory then gives a good approximation. 

Therefore for fluidized beds in which Pf/Ps << 1, to leading order, small-amplitude 
surface waves are shown to be independent of the dynamics of the bed, and, at this order, 
the modelling of the free surface of a fluidized bed as that of a pure fluid is shown to be 
valid provided the bed is stable to small-amplitude voidage disturbances, which validates 
the approximation E -  0 through the flow field. 
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